

NIH)1R21AI129873

Glycolipid extraction

Date written: 10/8/2018

Authors: Kazuhiro Aoki* and Mayumi Ishihara

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 *To whom correspondence should be addressed; Kazuhiro Aoki (<u>kaoki@ccrc.uga.edu</u>)

Reagents:

-Chloroform -Methanol -HPLC grade Water

Equipment/Apparatuses:

- Dounce homogenizer
- Vortex mixer
- Cold centrifuge
- N_2 evaporator
- Glass threaded culture tube (conical bottom)
- Phenolic cap with PTFE-Faced rubber liner
- Glass pipett

Procedures:

- 1. Extract glycolipids from sample by adding a mixture of chloroform:methanol:water (4:8:3, v/v/v). Tissue disruption is recommended to improve the recovery of glycolipids.
- 2. Centrifuge at 2,500 rpm for 10 min at 4°C to precipitate insoluble material (protein).
- 3. Transfer the supernatant into a new screw top glass tube (13 x 100 mm). This contains a variety of lipids, phospholipids, glycolipids, cholesterols and free fatty acids.
- 4. Add C/M/W and vortex.
- 5. Repeat extraction three times and combine the supernatant in the same glass tube.
- 6. Dry the extracts under N_2 stream at 40 °C.

Note:

- The extraction process can be stopped at any step and both sample and the extracts can be stored at 4 °C for overnight or -20°C for long storage. Sample preparation can be re-started anytime within the next 7 days.
- The precipitated protein can be used for glycoprotein-glycan analysis or protein ID by standard mass spectrometric approaches.

Copyright:

Kazuhiro Aoki, 2018

 $\hfill \ensuremath{\mathbb{C}}$ 2018 by Kazuhiro Aoki. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: http://creativecommons.org/licenses/by-nc-sa/4.0/